A GENERAL FRAMEWORK FOR ITERATIVE LEARNING CONTROL
نویسندگان
چکیده
منابع مشابه
A General Framework for Iterative Learning Control, Report no. 2438
In this contribution we place ILC in the realm of numerical optimization. This clarifies the role played by the design variables and how they affect e.g. convergence properties. We give a model based interpretation of these design variables and also a sufficient condition for convergence of ILC which is similar in spirit to the sufficient and necessary condition previously derived for linear sy...
متن کاملLearning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
A Learning Model Predictive Controller (LMPC) for iterative tasks is presented. The controller is referencefree and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. The paper presents the control design approach, and shows how to r...
متن کاملA general framework for reinforcement learning
In this artide we p1'Opose a geneml framework for sequential dedsion making. The fi'amework is baSf.d on the observation that the. derication of the optimal behaviour ttnde.T various decision criteria follows the. same patte!"n: the cost of policies can be decomposed into the successive applicatlOn of an opemtor that defines the related dynamic programming algordhm and this ope.mtor descnbes co...
متن کاملA General Framework for Robust Interactive Learning
We propose a general framework for interactively learning models, such as (binary or nonbinary) classifiers, orderings/rankings of items, or clusterings of data points. Our framework is based on a generalization of Angluin’s equivalence query model and Littlestone’s online learning model: in each iteration, the algorithm proposes a model, and the user either accepts it or reveals a specific mis...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2002
ISSN: 1474-6670
DOI: 10.3182/20020721-6-es-1901.00226